\(\int \frac {\cot ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\) [192]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 215 \[ \int \frac {\cot ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {2 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {71 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{32 \sqrt {2} a^{3/2} d}+\frac {7 \cot (c+d x) \sqrt {a+a \sec (c+d x)}}{32 a^2 d}-\frac {13 \cos (c+d x) \cot (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {a+a \sec (c+d x)}}{32 a^2 d}-\frac {\cos ^2(c+d x) \cot (c+d x) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \sqrt {a+a \sec (c+d x)}}{16 a^2 d} \]

[Out]

-2*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d+71/64*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+
a*sec(d*x+c))^(1/2))*2^(1/2)/a^(3/2)/d+7/32*cot(d*x+c)*(a+a*sec(d*x+c))^(1/2)/a^2/d-13/32*cos(d*x+c)*cot(d*x+c
)*sec(1/2*d*x+1/2*c)^2*(a+a*sec(d*x+c))^(1/2)/a^2/d-1/16*cos(d*x+c)^2*cot(d*x+c)*sec(1/2*d*x+1/2*c)^4*(a+a*sec
(d*x+c))^(1/2)/a^2/d

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3972, 483, 593, 597, 536, 209} \[ \int \frac {\cot ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {2 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}+\frac {71 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{32 \sqrt {2} a^{3/2} d}+\frac {7 \cot (c+d x) \sqrt {a \sec (c+d x)+a}}{32 a^2 d}-\frac {\cos ^2(c+d x) \cot (c+d x) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \sqrt {a \sec (c+d x)+a}}{16 a^2 d}-\frac {13 \cos (c+d x) \cot (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {a \sec (c+d x)+a}}{32 a^2 d} \]

[In]

Int[Cot[c + d*x]^2/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(-2*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) + (71*ArcTan[(Sqrt[a]*Tan[c + d*x])/(
Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(32*Sqrt[2]*a^(3/2)*d) + (7*Cot[c + d*x]*Sqrt[a + a*Sec[c + d*x]])/(32*a^2
*d) - (13*Cos[c + d*x]*Cot[c + d*x]*Sec[(c + d*x)/2]^2*Sqrt[a + a*Sec[c + d*x]])/(32*a^2*d) - (Cos[c + d*x]^2*
Cot[c + d*x]*Sec[(c + d*x)/2]^4*Sqrt[a + a*Sec[c + d*x]])/(16*a^2*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 483

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*(e*
x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*e*n*(b*c - a*d)*(p + 1))), x] + Dist[1/(a*n*(b*c - a*d)
*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*b*(m + 1) + n*(b*c - a*d)*(p + 1) + d*b*(m + n
*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ
[p, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 536

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 593

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_)), x
_Symbol] :> Simp[(-(b*e - a*f))*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*g*n*(b*c - a*d)*(p +
 1))), x] + Dist[1/(a*n*(b*c - a*d)*(p + 1)), Int[(g*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f)
*(m + 1) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c,
d, e, f, g, m, q}, x] && IGtQ[n, 0] && LtQ[p, -1]

Rule 597

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 3972

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Dist[-2*(a^(m/2 +
 n + 1/2)/d), Subst[Int[x^m*((2 + a*x^2)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \text {Subst}\left (\int \frac {1}{x^2 \left (1+a x^2\right ) \left (2+a x^2\right )^3} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^2 d} \\ & = -\frac {\cos ^2(c+d x) \cot (c+d x) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \sqrt {a+a \sec (c+d x)}}{16 a^2 d}-\frac {\text {Subst}\left (\int \frac {3 a-5 a^2 x^2}{x^2 \left (1+a x^2\right ) \left (2+a x^2\right )^2} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 a^3 d} \\ & = -\frac {13 \cos (c+d x) \cot (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {a+a \sec (c+d x)}}{32 a^2 d}-\frac {\cos ^2(c+d x) \cot (c+d x) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \sqrt {a+a \sec (c+d x)}}{16 a^2 d}-\frac {\text {Subst}\left (\int \frac {-7 a^2-39 a^3 x^2}{x^2 \left (1+a x^2\right ) \left (2+a x^2\right )} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{16 a^4 d} \\ & = \frac {7 \cot (c+d x) \sqrt {a+a \sec (c+d x)}}{32 a^2 d}-\frac {13 \cos (c+d x) \cot (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {a+a \sec (c+d x)}}{32 a^2 d}-\frac {\cos ^2(c+d x) \cot (c+d x) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \sqrt {a+a \sec (c+d x)}}{16 a^2 d}+\frac {\text {Subst}\left (\int \frac {57 a^3-7 a^4 x^2}{\left (1+a x^2\right ) \left (2+a x^2\right )} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{32 a^4 d} \\ & = \frac {7 \cot (c+d x) \sqrt {a+a \sec (c+d x)}}{32 a^2 d}-\frac {13 \cos (c+d x) \cot (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {a+a \sec (c+d x)}}{32 a^2 d}-\frac {\cos ^2(c+d x) \cot (c+d x) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \sqrt {a+a \sec (c+d x)}}{16 a^2 d}+\frac {2 \text {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a d}-\frac {71 \text {Subst}\left (\int \frac {1}{2+a x^2} \, dx,x,-\frac {\tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{32 a d} \\ & = -\frac {2 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {71 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{32 \sqrt {2} a^{3/2} d}+\frac {7 \cot (c+d x) \sqrt {a+a \sec (c+d x)}}{32 a^2 d}-\frac {13 \cos (c+d x) \cot (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {a+a \sec (c+d x)}}{32 a^2 d}-\frac {\cos ^2(c+d x) \cot (c+d x) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \sqrt {a+a \sec (c+d x)}}{16 a^2 d} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 6.51 (sec) , antiderivative size = 210, normalized size of antiderivative = 0.98 \[ \int \frac {\cot ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {27 \cot (2 (c+d x))+12 \csc (c+d x)+13 \csc (2 (c+d x))+256 \arctan \left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\frac {1}{1+\sec (c+d x)}}}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x) \sqrt {\frac {\sec (c+d x)}{(1+\sec (c+d x))^2}} \sqrt {1+\sec (c+d x)}-142 \arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \sec ^{\frac {3}{2}}(c+d x) \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {1+\sec (c+d x)}}{32 d (a (1+\sec (c+d x)))^{3/2}} \]

[In]

Integrate[Cot[c + d*x]^2/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

-1/32*(27*Cot[2*(c + d*x)] + 12*Csc[c + d*x] + 13*Csc[2*(c + d*x)] + 256*ArcTan[Tan[(c + d*x)/2]/Sqrt[(1 + Sec
[c + d*x])^(-1)]]*Cos[(c + d*x)/2]^4*Sec[c + d*x]^(3/2)*Sqrt[Sec[c + d*x]/(1 + Sec[c + d*x])^2]*Sqrt[1 + Sec[c
 + d*x]] - 142*ArcSin[Tan[(c + d*x)/2]]*Cos[(c + d*x)/2]^4*Sqrt[Sec[(c + d*x)/2]^2]*Sec[c + d*x]^(3/2)*Sqrt[(1
 + Sec[c + d*x])^(-1)]*Sqrt[1 + Sec[c + d*x]])/(d*(a*(1 + Sec[c + d*x]))^(3/2))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(496\) vs. \(2(184)=368\).

Time = 2.00 (sec) , antiderivative size = 497, normalized size of antiderivative = 2.31

method result size
default \(\frac {\sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (24 \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{\frac {9}{2}} \sin \left (d x +c \right )-24 \left (1-\cos \left (d x +c \right )\right )^{2} \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{\frac {7}{2}} \csc \left (d x +c \right )+28 \left (1-\cos \left (d x +c \right )\right )^{2} \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{\frac {5}{2}} \csc \left (d x +c \right )-4 \left (1-\cos \left (d x +c \right )\right )^{6} \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \csc \left (d x +c \right )^{5}-35 \left (1-\cos \left (d x +c \right )\right )^{2} \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{\frac {3}{2}} \csc \left (d x +c \right )+25 \left (1-\cos \left (d x +c \right )\right )^{4} \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \csc \left (d x +c \right )^{3}-192 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right ) \left (1-\cos \left (d x +c \right )\right )-42 \left (1-\cos \left (d x +c \right )\right )^{2} \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \csc \left (d x +c \right )+213 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \left (1-\cos \left (d x +c \right )\right )\right )}{192 d \,a^{2} \left (1-\cos \left (d x +c \right )\right )}\) \(497\)

[In]

int(cot(d*x+c)^2/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/192/d/a^2*(-2*a/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)/(1-cos(d*x+
c))*(24*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(9/2)*sin(d*x+c)-24*(1-cos(d*x+c))^2*((1-cos(d*x+c))^2*csc(d*x+c)^2-
1)^(7/2)*csc(d*x+c)+28*(1-cos(d*x+c))^2*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(5/2)*csc(d*x+c)-4*(1-cos(d*x+c))^6*
((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*csc(d*x+c)^5-35*(1-cos(d*x+c))^2*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(3/
2)*csc(d*x+c)+25*(1-cos(d*x+c))^4*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*csc(d*x+c)^3-192*2^(1/2)*arctanh(2^(
1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c)))*(1-cos(d*x+c))-42*(1-cos(d*x+c))^2*((1-
cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*csc(d*x+c)+213*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^
(1/2))*(1-cos(d*x+c)))

Fricas [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 603, normalized size of antiderivative = 2.80 \[ \int \frac {\cot ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\left [-\frac {71 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) \sin \left (d x + c\right ) + 64 \, {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \log \left (-\frac {8 \, a \cos \left (d x + c\right )^{3} - 4 \, {\left (2 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right ) + 1}\right ) \sin \left (d x + c\right ) + 4 \, {\left (27 \, \cos \left (d x + c\right )^{3} + 12 \, \cos \left (d x + c\right )^{2} - 7 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{128 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )} \sin \left (d x + c\right )}, -\frac {71 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) + 64 \, {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {2 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right )}{2 \, a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) - a}\right ) \sin \left (d x + c\right ) + 2 \, {\left (27 \, \cos \left (d x + c\right )^{3} + 12 \, \cos \left (d x + c\right )^{2} - 7 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{64 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )} \sin \left (d x + c\right )}\right ] \]

[In]

integrate(cot(d*x+c)^2/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/128*(71*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c
) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 +
2*cos(d*x + c) + 1))*sin(d*x + c) + 64*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*log(-(8*a*cos(d*x + c)^3
 - 4*(2*cos(d*x + c)^2 - cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c) - 7*a*cos
(d*x + c) + a)/(cos(d*x + c) + 1))*sin(d*x + c) + 4*(27*cos(d*x + c)^3 + 12*cos(d*x + c)^2 - 7*cos(d*x + c))*s
qrt((a*cos(d*x + c) + a)/cos(d*x + c)))/((a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)*sin(d*x + c)),
-1/64*(71*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d
*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))*sin(d*x + c) + 64*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*
arctan(2*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c)/(2*a*cos(d*x + c)^2 + a*cos
(d*x + c) - a))*sin(d*x + c) + 2*(27*cos(d*x + c)^3 + 12*cos(d*x + c)^2 - 7*cos(d*x + c))*sqrt((a*cos(d*x + c)
 + a)/cos(d*x + c)))/((a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)*sin(d*x + c))]

Sympy [F]

\[ \int \frac {\cot ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\cot ^{2}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(cot(d*x+c)**2/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral(cot(c + d*x)**2/(a*(sec(c + d*x) + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {\cot ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {\cot \left (d x + c\right )^{2}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cot(d*x+c)^2/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cot(d*x + c)^2/(a*sec(d*x + c) + a)^(3/2), x)

Giac [A] (verification not implemented)

none

Time = 1.09 (sec) , antiderivative size = 143, normalized size of antiderivative = 0.67 \[ \int \frac {\cot ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left (\frac {2 \, \sqrt {2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {17 \, \sqrt {2}}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {16 \, \sqrt {2}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a\right )} \sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{64 \, d} \]

[In]

integrate(cot(d*x+c)^2/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-1/64*(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*(2*sqrt(2)*tan(1/2*d*x + 1/2*c)^2/(a^2*sgn(cos(d*x + c))) - 17*sqrt
(2)/(a^2*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c) + 16*sqrt(2)/(((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(
1/2*d*x + 1/2*c)^2 + a))^2 - a)*sqrt(-a)*sgn(cos(d*x + c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {{\mathrm {cot}\left (c+d\,x\right )}^2}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int(cot(c + d*x)^2/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int(cot(c + d*x)^2/(a + a/cos(c + d*x))^(3/2), x)